
Block-Structured Adaptive Mesh
Refinement

Lecture 2
Incompressible Navier-Stokes Equations

– Fractional Step Scheme

1-D AMR for “classical” PDE’s
– hyperbolic
– elliptic
– parabolic

Accuracy considerations
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Extension to More General Systems
How do we generalize the basic AMR ideas to more general systems?

Incompressible Navier-Stokes equations as a prototype

Ut + U · ∇U + ∇p = ε∆U

∇ · U = 0

Advective transport

Diffusive transport

Evolution subject to a constraint

Bell Lecture 2 – p. 2/27



Vector field decomposition
Hodge decomposition: Any vector field V can be written as

V = Ud + ∇φ

where ∇ · Ud = 0 and U · n = 0 on the boundary

The two components, Ud and ∇φ are orthogonal

∫

U · ∇φ dx = 0

With these properties we can define a projection P

P = I −∇(∆−1)∇·

such that
Ud = PV

with P
2 = P and ||P|| = 1

Bell Lecture 2 – p. 3/27



Projection form of Navier-Stokes
Incompressible Navier-Stokes equations

Ut + U · ∇U + ∇p = ε∆U

∇ · U = 0

Applying the projection to the momentum equation recasts the system as
an initial value problem

Ut + P(U · ∇U − ε∆U) = 0

Develop a fractional step scheme based on the projection form of
equations

Design of the fractional step scheme takes into account issues that will
arise in generalizing the methodology to

More general Low Mach number models

AMR
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Discrete projection
Projection separates vector fields into orthogonal components

V = Ud + ∇φ

Orthogonality from integration by parts (with U · n = 0 at boundaries)

∫

U · ∇p dx = −

∫

∇ · U p dx = 0

Discretely mimic the summation by parts:

∑

U ·GP = −
∑

(DU) p

In matrix form D = −GT

Discrete projection
V = Ud +Gp

DV = DGp Ud = V −Gp

P = I −G(DG)−1
D
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Spatial discretization
Define discrete variables so that U , Gp defined at the same locations and
DU , p defined at the same locations.

D : Vspace → pspace G : pspace → Vspace

Candidate variable definitions:

u,v

p

u

v

p u,v,p
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Projection discretizations
What is the DG stencil corresponding to the different discretization choices

Non-compact stencils → decoupling in matrix

Decoupling is not a problem for incompressible Navier-Stokes with
homogeneous boundary conditions but it causes difficulties for

Nontrivial boundary conditions

Low Mach number generalizations

AMR
Fully staggered MAC discretization is problematic for AMR

Proliferation of solvers
Algorithm and discretization design issues
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Approximate projection methods
Based on AMR considerations, we will define velocities at cell-centers

Discrete projection
V = Ud +Gp

DV = DGp Ud = V −Gp

P = I −G(DG)−1
D

Avoid decoupling by replacing inversion of DG in definition of P by a
standard elliptic discretization.
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Approximate projection methods
Analysis of projection options indicates staggered pressure has "best"
approximate projection properties in terms of stability and accuracy.

DUi+1/2,j+
1/2

=
ui+1,j+1 + ui+1,j − ui,j+1 − ui,j

2∆x

+
vi+1,j+1 + vi,j+1 − ui+1,j − ui,j

2∆y

Gpij =











pi+1/2,j+1/2+pi+1/2,j−1/2−pi−1/2,j+1/2−pi−1/2,j−1/2

2∆x

pi+1/2,j+1/2+pi−1/2,j+1/2−pi+1/2,j−1/2−pi−1/2,j−1/2

2∆y











Projection is given by P = I −G(L)−1D

where L is given by bilinear finite element basis

(∇p,∇χ) = (V,∇χ)

Nine point discretization
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2nd Order Fractional Step Scheme
First Step:

Construct an intermediate velocity field U∗:

U∗ − Un

∆t
= −[UADV · ∇U ]n+ 1

2 −∇pn− 1

2 + ε∆
Un + U∗

2

Second Step:

Project U∗ onto constraint and update p. Form

V =
U∗

∆t
+Gp

n− 1

2

Solve
Lp

n+ 1

2 = DV

Set
U

n+1 = ∆t(V −Gp
n+ 1

2 )

Bell Lecture 2 – p. 10/27



Computation of Advective Derivatives
Start with Un at cell centers
Predict normal velocities at cell edges using variation of second-order
Godunov methodology ⇒ u

n+1/2
i+1/2,j

, v
n+1/2
i,j+1/2

MAC-project the edge-based normal velocities, i.e. solve

D
MAC(GMAC

ψ) = D
MAC

U
n+1/2

and define normal advection velocities

u
ADV
i+1/2,j = u

n+1/2
i+1/2,j

−G
x
ψ, v

ADV
i,j+1/2 = v

n+1/2
i,j+1/2

−G
y
ψ

Use these advection velocities to define [UADV · ∇U ]n+1/2.

• ••

•

•

× ×
�

�
× : u
� : v
• : ψ
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Second-order projection algorithm

Properties

Second-order in space and time

Robust discretization of
advection terms using modern
upwind methodology

Approximate projection formula-
tion

Algorithm components

Explicit advection

Semi-implicit diffusion

Elliptic projections
5-point cell-centered
9-point node-centered

How do we generalize AMR to work for projection algorithm?

Look at discretization details in one dimension
Revisit hyperbolic

Elliptic

Parabolic

Spatial discretizations
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Hyperbolic–1d
Consider Ut + Fx = 0 discretized with an explicit finite difference
scheme:

Un+1
i − Un

i

∆t
=
F

n+ 1

2

i−1/2
− F

n+ 1

2

i+1/2

∆x

In order to advance the composite solution we must specify how to
compute the fluxes:

∆tf

∆xf ∆xc

× × × × × ×
j−1 j J J+1

Away from coarse/fine interface the coarse grid sees the average of
fine grid values onto the coarse grid

Fine grid uses interpolated coarse grid data

The fine flux is used at the coarse/fine interface
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Hyperbolic–composite
One can advance the coarse grid

∆tf

◦ × ×
(J−1) J J+1

then advance the fine grid

∆tf

× × × × ◦ ◦ ◦
j−1 j (j+1)

using “ghost cell data” at the fine level interpolated from the coarse grid
data.

This results in a flux mismatch at the coarse/fine interface, which creates
an error in Un+1

J . The error can be corrected by refluxing, i.e. setting

∆xcU
n+1
J := ∆xcU

n+1
J − ∆tfF c

J−1/2 + ∆tfF f
j+1/2

Before the next step one must average the fine grid solution onto the
coarse grid. Bell Lecture 2 – p. 14/27



Hyperbolic–subcycling
To subcycle in time we advance the coarse grid with ∆tc

∆tc

◦ × ×
(J−1) J J+1

and advance the fine grid multiple times with ∆tf .

∆tf

∆tf

∆tf

∆tf

× × × × ◦ ◦ ◦
j−1 j (j+1)

The refluxing correction now must
be summed over the fine grid time
steps:

∆xcU
n+1
J := ∆xcU

n+1
J

− ∆tcF c
J−1/2 +

∑

∆tfF f
j+1/2
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AMR Discretization algorithms
Design Principles:

Define what is meant by the solution on the grid hierarchy.

Identify the errors that result from solving the equations on each level
of the hierarchy “independently” (motivated by subcycling in time).

Solve correction equation(s) to “fix” the solution.

For subcycling, average the correction in time.

Coarse grid supplies Dirichlet data as boundary conditions for the fine
grids.

Errors take the form of flux mismatches at the coarse/fine interface.
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Elliptic
Consider −φxx = ρ on a locally refined grid:

∆xf ∆xc

× × × × × ×
j − 1 j J J + 1

We discretize with standard centered differences except at j and J . We
then define a flux, φc−f

x , at the coarse / fine boundary in terms of φf and φc

and discretize in flux form with

−
1

∆xf

(

φ
c−f
x −

(φj − φj−1)

∆xf

)

= ρj

at i = j and

−
1

∆xc

(

(φJ+1 − φJ )

∆xc
− φ

c−f
x

)

= ρJ

at I = J .

This defines a perfectly reasonable linear system but ...
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Elliptic – composite
Suppose we solve

−
1

∆xc

(

(φI+1 − φI)

∆xc
−

(φI − φI−1)

∆xc

)

= ρI

at all coarse grid points I and then solve

−
1

∆xf

(

(φi+1 − φi)

∆xf
−

(φi − φi−1)

∆xf

)

= ρi

at all fine grid points i 6= j and use the “correct” stencil at i = j, holding the
coarse grid values fixed.

× × × × × ×
j − 1 j J J + 1
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Elliptic – synchronization

The composite solution defined by φc and φf satisfies the composite
equations everywhere except at J.

The error is manifest in the difference between φc−f
x and (φJ−φJ−1

)
∆xc

.

Let e = φ− φ. Then −∆he = 0 except at I = J where

−∆h
e =

1

∆xc

(

(φJ − φJ−1)

∆xc
− φ

c−f
x

)

Solve the composite for e and correct

φc = φ
c
+ ec

φf = φ
f

+ ef

The resulting solution is the same as solving the composite operator
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Parabolic – composite
Consider ut + fx = εuxx and the semi-implicit time-advance algorithm:

un+1
i − un

i

∆t
+
f

n+ 1

2

i+1/2
− f

n+ 1

2

i−1/2

∆x
=
ε

2

(

(∆h
u

n+1)i + (∆h
u

n)i

)

∆t

∆xf ∆xc

× × × × × ×
j−1 j J J+1

Again if one advances the coarse and fine levels separately, a mismatch in
the flux at the coarse-fine interface results.

Let uc−f be the initial solution from separate evolution
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Parabolic – synchronization
The difference en+1 between the exact composite solution un+1 and the
solution un+1 found by advancing each level separately satisfies

(I −
ε∆t

2
∆h) en+1 =

∆t

∆xc
(δf + δD)

∆t δf = ∆t (−fJ−1/2 + fj+1/2)

∆t δD =
ε∆t

2

(

(uc,n
x,J−1/2

+ u
c,n+1
x,J−1/2

) − (uc−f,n
x + u

c−f,n+1
x )

)

Source term is localized to to coarse cell at coarse / fine boundary

Updating un+1 = un+1 + e again recovers the exact composite solution
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Parabolic – subcycling

Advance coarse grid

∆tc

◦ × ×
(J−1) J J+1

Advance fine grid r times

∆tf

∆tf

∆tf

∆tf

× × × × ◦
j−1 j (j+1)

The refluxing correction now must be summed over the fine grid time
steps:

(I −
ε∆tc

2
∆h) en+1 =

∆tc

∆xc
(δf + δD)

∆tc δf = −∆tc fJ−1/2 +
∑

∆tffj+1/2

∆tc δD =
ε∆tc

2
(uc,n

x,J−1/2
+ u

c,n+1
x,J−1/2

)

−
∑ ε∆tf

2
(uc−f,n

x + u
c−f,n+1
x )
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Spatial accuracy – cell-centered
Modified equation gives

ψ
comp = ψ

exact + ∆−1
τ

comp

where τ is a local function of the solution derivatives.

Simple interpolation formulae are not sufficiently accurate for second-order
operators

ϕy
c

ϕy
c

ϕx
c-f

ϕx
c-f

ϕx
c
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Convergence results
Local Truncation Error

D Norm ∆x ||L(Ue) − ρ||h ||L(Ue) − ρ||2h R P

2 L∞ 1/32 1.57048e-02 2.80285e-02 1.78 0.84
2 L∞ 1/64 8.08953e-03 1.57048e-02 1.94 0.96
3 L∞ 1/16 2.72830e-02 5.60392e-02 2.05 1.04
3 L∞ 1/32 1.35965e-02 2.72830e-02 2.00 1.00
3 L1 1/32 8.35122e-05 3.93200e-04 4.70 2.23

Solution Error

D Norm ∆x ||Uh − Ue|| ||U2h − Ue|| R P

2 L∞ 1/32 5.13610e-06 1.94903e-05 3.79 1.92
2 L∞ 1/64 1.28449e-06 5.13610e-06 3.99 2.00
3 L∞ 1/16 3.53146e-05 1.37142e-04 3.88 1.96
3 L∞ 1/32 8.88339e-06 3.53146e-05 3.97 1.99

ψ
computed = ψ

exact + L
−1
τ

Solution operator smooths the error
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Spatial accuracy – nodal
Node-based solvers:

•

•

•

•

•

•

◦

◦

◦

◦

◦

◦

Symmetric self-adjoint matrix

Accuracy properties given by approximation theory
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Recap
Solving coarse grid then solving fine grid with interpolated Dirichlet
boundary conditions leads to a flux mismatch at boundary

Synchronization corrects mismatch in fluxes at coarse / fine boundaries.

Correction equations match the structure of the process they are
correcting.

For explicit discretizations of hyperbolic PDE’s the correction is an
explicit flux correction localized at the coarse/fine interface.

For an elliptic equation (e.g., the projection) the source is localized on
the coarse/fine interface but an elliptic equation is solved to distribute
the correction through the domain. Discrete analog of a layer
potential problem.

For Crank-Nicolson discretization of parabolic PDE’s, the correction
source is localized on the coarse/fine interface but the correction
equation diffuses the correction throughout the domain.
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Efficiency considerations
For the elliptic solves, we can substitute the following for a full composite
solve with no loss of accuracy

Solve ∆ψc = gc on coarse grid

Solve ∆ψf = gf on fine grid using interpolated Dirichlet boundary
conditions
Evaluate composite residual on the coarse cells adjacent to the fine
grids

Solve for correction to coarse and fine solutions on the composite
hierarchy

Because of the smoothing properties of the elliptic operator, we can, in
some cases, substitute either a two-level solve or a coarse level solve for
the full composite operator to compute the correction to the solution.

Source is localized at coarse cells at coares / fine boundary

Solution is a discrete harmonic function in interior of fine grid

This correction is exact in 1-D
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